
dql
Release 0.6.2

Dec 23, 2021

Contents

1 User Guide 3
1.1 Getting Started . 3
1.2 Queries . 4
1.3 Data Types . 13
1.4 Options . 13
1.5 Developing . 14
1.6 Changelog . 16

2 API Reference 23
2.1 dql package . 23

3 Indices and tables 25

i

ii

dql, Release 0.6.2

A simple, SQL-ish language for DynamoDB

Code lives here: https://github.com/stevearc/dql

Contents 1

https://github.com/stevearc/dql

dql, Release 0.6.2

2 Contents

CHAPTER 1

User Guide

1.1 Getting Started

Install DQL with pip:

pip install dql

Since DQL uses botocore under the hood, the authentication mechanism is the same. You can
use the $HOME/.aws/credentials file or set the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY.

DQL uses us-west-1 as the default region. You can change this by setting the AWS_REGION variable or passing it
in on the command line:

$ dql -r us-east-1

You can begin using DQL immediately. Try creating a table and inserting some data

us-west-1> CREATE TABLE posts (username STRING HASH KEY,
> postid NUMBER RANGE KEY,
> ts NUMBER INDEX('ts-index'),
> THROUGHPUT (5, 5));

us-west-1> INSERT INTO posts (username, postid, ts, text)
> VALUES ('steve', 1, 1386413481, 'Hey guys!'),
> ('steve', 2, 1386413516, 'Guys?'),
> ('drdice', 1, 1386413575, 'No one here');

us-west-1> ls
Name Status Read Write
posts ACTIVE 5 5

You can query this data in a couple of ways. The first should look familiar

us-west-1> SELECT * FROM posts WHERE username = 'steve';

3

dql, Release 0.6.2

By default, SELECT statements are only allowed to perform index queries, not scan the table. You can enable scans
by setting the ‘allow_select_scan’ option (see Options) or replacing SELECT with SCAN:

us-west-1> SCAN * FROM posts WHERE postid = 2;

You can also perform updates to the data in a familiar way:

us-west-1> UPDATE posts SET text = 'Hay gusys!!11' WHERE
> username = 'steve' AND postid = 1;

The Queries section has detailed information about each type of query.

1.2 Queries

1.2.1 ALTER

Synopsis

ALTER TABLE tablename
SET [INDEX index] THROUGHPUT throughput

ALTER TABLE tablename
DROP INDEX index [IF EXISTS]

ALTER TABLE tablename
CREATE GLOBAL [ALL|KEYS|INCLUDE] INDEX global_index [IF NOT EXISTS]

Examples

ALTER TABLE foobars SET THROUGHPUT (4, 8);
ALTER TABLE foobars SET THROUGHPUT (7, *);
ALTER TABLE foobars SET INDEX ts-index THROUGHPUT (5, *);
ALTER TABLE foobars SET INDEX ts-index THROUGHPUT (5, *);
ALTER TABLE foobars DROP INDEX ts-index;
ALTER TABLE foobars DROP INDEX ts-index IF EXISTS;
ALTER TABLE foobars CREATE GLOBAL INDEX ('ts-index', ts NUMBER, THROUGHPUT (5, 5));
ALTER TABLE foobars CREATE GLOBAL INDEX ('ts-index', ts NUMBER) IF NOT EXISTS;

Description

Alter changes the read/write throughput on a table. You may only decrease the throughput on a table four times per
day (see the AWS docs on limits. If you wish to change one of the throughput values and not the other, pass in 0 or *
for the value you wish to remain unchanged.

Parameters

tablename The name of the table

throughput The read/write throughput in the form (read_throughput, write_throughput)

index The name of the global index

4 Chapter 1. User Guide

dql, Release 0.6.2

1.2.2 ANALYZE

Synopsis

ANALYZE query

Examples

ANALYZE SELECT * FROM foobars WHERE id = 'a';
ANALYZE INSERT INTO foobars (id, name) VALUES (1, 'dsa');
ANALYZE DELETE FROM foobars KEYS IN ('foo', 'bar'), ('baz', 'qux');

Description

You can prefix any query that will read or write data with ANALYZE and after running the query it will print out how
much capacity was consumed at every part of the query.

1.2.3 CREATE

Synopsis

CREATE TABLE
[IF NOT EXISTS]
tablename
attributes
[GLOBAL [ALL|KEYS|INCLUDE] INDEX global_index]

Examples

CREATE TABLE foobars (id STRING HASH KEY);
CREATE TABLE IF NOT EXISTS foobars (id STRING HASH KEY);
CREATE TABLE foobars (id STRING HASH KEY, foo BINARY RANGE KEY,

THROUGHPUT (1, 1));
CREATE TABLE foobars (id STRING HASH KEY,

foo BINARY RANGE KEY,
ts NUMBER INDEX('ts-index'),
views NUMBER INDEX('views-index'));

CREATE TABLE foobars (id STRING HASH KEY, bar STRING) GLOBAL INDEX
('bar-index', bar, THROUGHPUT (1, 1));

CREATE TABLE foobars (id STRING HASH KEY, baz NUMBER,
THROUGHPUT (2, 2))
GLOBAL INDEX ('bar-index', bar STRING, baz)
GLOBAL INCLUDE INDEX ('baz-index', baz, ['bar'], THROUGHPUT (4,

→˓2));

Description

Create a new table. You must have exactly one hash key, zero or one range keys, and up to five local indexes and five
global indexes. You must have a range key in order to have any local indexes.

1.2. Queries 5

dql, Release 0.6.2

Parameters

IF NOT EXISTS If present, do not throw an exception if the table already exists.

tablename The name of the table that you want to alter

attributes A list of attribute declarations of the format (name data type [key type]) The available data types are
STRING, NUMBER, and BINARY. You will not need to specify any other type, because these fields are only
used for index creation and it is (presently) impossible to index anything other than these three. The avail-
able key types are HASH KEY, RANGE KEY, and [ALL|KEYS|INCLUDE] INDEX(name). At the end
of the attribute list you may specify the THROUGHPUT, which is in the form of (read_throughput,
write_throughput). If throughput is not specified it will default to (5, 5).

global_index A global index for the table. You may provide up to 5. The format is (name, hash key, [range key],
[non-key attributes], [throughput]). If the hash/range key is in the attributes declaration, you don’t need to
supply a data type.. non-key attributes should only be provided if it is an INCLUDE index. If throughput is not
specified it will default to (5, 5).

Schema Design at a Glance

When DynamoDB scales, it partitions based on the hash key. For this reason, all queries (not scans) must include the
hash key in the WHERE clause (and optionally the range key or a local/global index). So keep that in mind as you
design your schema.

The keypair formed by the hash key and range key is referred to as the ‘primary key’. If there is no range key, the
primary key is just the hash key. The primary key is unique among items in the table. No two items may have the
same primary key.

From a query standpoint, local indexes behave nearly the same as a range key. The main difference is that the hash
key + range key pair doesn’t have to be unique.

Global indexes can be thought of as adding additional hash and range keys to the table. They allow you to query
a table on a different hash key than the one defined on the table. Global indexes have throughput that is managed
independently of the table they are on. Global index keys do not have a uniqueness constraint (there may be multiple
items in the table that have the same hash and range key).

Read Amazon’s documentation for Create Table for more information.

1.2.4 DELETE

Synopsis

DELETE FROM
tablename
[KEYS IN primary_keys]
[WHERE expression]
[USING index]
[THROTTLE throughput]

Examples

DELETE FROM foobars; -- This will delete all items in the table!
DELETE FROM foobars WHERE foo != 'bar' AND baz >= 3;
DELETE FROM foobars KEYS IN 'hkey1', 'hkey2' WHERE attribute_exists(foo);

(continues on next page)

6 Chapter 1. User Guide

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_CreateTable.html

dql, Release 0.6.2

(continued from previous page)

DELETE FROM foobars KEYS IN ('hkey1', 'rkey1'), ('hkey2', 'rkey2');
DELETE FROM foobars WHERE (foo = 'bar' AND baz >= 3) USING baz-index;

Description

Parameters

tablename The name of the table

primary_keys List of the primary keys of the items to delete

expression See SELECT for details about the WHERE clause

index When the WHERE expression uses an indexed attribute, this allows you to manually specify which index name
to use for the query. You will only need this if the constraints provided match more than one index.

THROTTLE Limit the amount of throughput this query can consume. This is a pair of values for
(read_throughput, write_throughput). You can use a flat number or a percentage (e.g. 20 or
50%). Using * means no limit (typically useless unless you have set a default throttle in the Options).

Notes

Using the KEYS IN form is much more efficient because DQL will not have to perform a query first to get the primary
keys.

1.2.5 DROP

Synopsis

DROP TABLE
[IF EXISTS]
tablename

Examples

DROP TABLE foobars;
DROP TABLE IF EXISTS foobars;

Description

Deletes a table and all its items.

Warning: This action cannot be undone! Treat the same way you treat rm -rf

1.2. Queries 7

dql, Release 0.6.2

Parameters

IF EXISTS If present, do not raise an exception if the table does not exist.

tablename The name of the table

1.2.6 DUMP

Synopsis

DUMP SCHEMA [tablename [, ...]]

Examples

DUMP SCHEMA;
DUMP SCHEMA foobars, widgets;

Description

Print out the matching CREATE statements for your tables.

Parameters

tablename The name of the table(s) whose schema you want to dump. If no tablenames are present, it will dump all
table schemas.

1.2.7 EXPLAIN

Synopsis

EXPLAIN query

Examples

EXPLAIN SELECT * FROM foobars WHERE id = 'a';
EXPLAIN INSERT INTO foobars (id, name) VALUES (1, 'dsa');
EXPLAIN DELETE FROM foobars KEYS IN ('foo', 'bar'), ('baz', 'qux');

Description

This is a meta-query that will print out debug information. It will not make any actual requests except for possibly a
DescribeTable if the primary key or indexes are needed to build the query. The output of the EXPLAIN will be
the name of the DynamoDB Action(s) that will be called, and the parameters passed up in the request. You can use
this to preview exactly what DQL will do before it happens.

8 Chapter 1. User Guide

dql, Release 0.6.2

1.2.8 INSERT

Synopsis

INSERT INTO tablename
attributes VALUES values
[THROTTLE throughput]

INSERT INTO tablename
items
[THROTTLE throughput]

Examples

INSERT INTO foobars (id) VALUES (1);
INSERT INTO foobars (id, bar) VALUES (1, 'hi'), (2, 'yo');
INSERT INTO foobars (id='foo', bar=10);
INSERT INTO foobars (id='foo'), (id='bar', baz=(1, 2, 3));

Description

Insert data into a table

Parameters

tablename The name of the table

attributes Comma-separated list of attribute names

values Comma-separated list of data to insert. The data is of the form (var [, var]. . .) and must contain the same
number of items as the attributes parameter.

items Comma-separated key-value pairs to insert.

THROTTLE Limit the amount of throughput this query can consume. This is a pair of values for
(read_throughput, write_throughput). You can use a flat number or a percentage (e.g. 20 or
50%). Using * means no limit (typically useless unless you have set a default throttle in the Options).

See Data Types to find out how to represent the different data types of DynamoDB.

1.2.9 LOAD

Synopsis

LOAD filename INTO tablename
[THROTTLE throughput]

Examples

LOAD archive.p INTO mytable;
LOAD dump.json.gz INTO mytable;

1.2. Queries 9

dql, Release 0.6.2

Description

Take the results of a SELECT ... SAVE outfile and insert all of the records into a table.

Parameters

filename The file containing the records to upload

tablename The name of the table(s) to upload the records into

THROTTLE Limit the amount of throughput this query can consume. This is a pair of values for
(read_throughput, write_throughput). You can use a flat number or a percentage (e.g. 20 or
50%). Using * means no limit (typically useless unless you have set a default throttle in the Options).

1.2.10 SCAN

See SELECT . This is the exact same as a SELECT statement except it is always allowed to perform table scans. Note
that this means a SCAN statement may still be doing an index query.

1.2.11 SELECT

Synopsis

SELECT
[CONSISTENT]
attributes
FROM tablename
[KEYS IN primary_keys | WHERE expression]
[USING index]
[LIMIT limit]
[SCAN LIMIT scan_limit]
[ORDER BY field]
[ASC | DESC]
[THROTTLE throughput]
[SAVE filename]

Examples

SELECT * FROM foobars SAVE out.p;
SELECT * FROM foobars WHERE foo = 'bar';
SELECT count(*) FROM foobars WHERE foo = 'bar';
SELECT id, TIMESTAMP(updated) FROM foobars KEYS IN 'id1', 'id2';
SELECT * FROM foobars KEYS IN ('hkey', 'rkey1'), ('hkey', 'rkey2');
SELECT CONSISTENT * foobars WHERE foo = 'bar' AND baz >= 3;
SELECT * foobars WHERE foo = 'bar' AND attribute_exists(baz);
SELECT * foobars WHERE foo = 1 AND NOT (attribute_exists(bar) OR contains(baz, 'qux
→˓'));
SELECT 10 * (foo - bar) FROM foobars WHERE id = 'a' AND ts < 100 USING ts-index;
SELECT * FROM foobars WHERE foo = 'bar' LIMIT 50 DESC;
SELECT * FROM foobars THROTTLE (50%, *);

10 Chapter 1. User Guide

dql, Release 0.6.2

Description

Query a table for items.

Parameters

CONSISTENT If this is present, perform a strongly consistent read

attributes Comma-separated list of attributes to fetch or expressions. You can use the TIMESTAMP and DATE func-
tions, as well as performing simple, arbitrarily nested arithmetic (foo + (bar - 3) / 100). SELECT *
is a special case meaning ‘all attributes’. SELECT count(*) is a special case that will return the number of
results, rather than the results themselves.

tablename The name of the table

index When the WHERE expression uses an indexed attribute, this allows you to manually specify which index name
to use for the query. You will only need this if the constraints provided match more than one index.

limit The maximum number of items to return.

scan_limit The maximum number of items for DynamoDB to scan (not necessarily the number of matching items
returned).

ORDER BY Sort the results by a field.

Warning: Using ORDER BY with LIMIT may produce unexpected results. If you use ORDER BY on the range
key of the index you are querying on, it will work as expected. Otherwise, DQL will fetch the number of results
specified by the LIMIT and then sort them.

ASC | DESC Sort the results in ASCending (the default) or DESCending order.

THROTTLE Limit the amount of throughput this query can consume. This is a pair of values for
(read_throughput, write_throughput). You can use a flat number or a percentage (e.g. 20 or
50%). Using * means no limit (typically useless unless you have set a default throttle in the Options).

SAVE Save the results to a file. By default the items will be encoded with pickle, but the ‘.json’ and ‘.csv’ extensions
will use the proper format. You may also append a ‘.gz’ or ‘.gzip’ afterwards to gzip the results. Note that the
JSON and CSV formats will be lossy because they cannot properly encode some data structures, such as sets.

Where Clause

If provided, the SELECT operation will use these constraints as the KeyConditionExpression if possible, and
if not (or if there are constraints left over), the FilterExpression. All query syntax is pulled directly from the
AWS docs: http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html

In general, you may use any syntax mentioned in the docs, but you don’t need to worry about reserved words or
passing in data as variables like :var1. DQL will handle that for you.

Notes

When using the KEYS IN form, DQL will perform a batch get instead of a table query. See the AWS docs for more
information on query parameters.

1.2. Queries 11

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html

dql, Release 0.6.2

1.2.12 UPDATE

Synopsis

UPDATE tablename
update_expression
[KEYS IN primary_keys]
[WHERE expression]
[USING index]
[RETURNS (NONE | (ALL | UPDATED) (NEW | OLD))]
[THROTTLE throughput]

Examples

UPDATE foobars SET foo = 'a';
UPDATE foobars SET foo = 'a', bar = bar + 4 WHERE id = 1 AND foo = 'b';
UPDATE foobars SET foo = if_not_exists(foo, 'a') RETURNS ALL NEW;
UPDATE foobars SET foo = list_append(foo, 'a') WHERE size(foo) < 3;
UPDATE foobars ADD foo 1, bar 4;
UPDATE foobars ADD fooset (1, 2);
UPDATE foobars REMOVE old_attribute;
UPDATE foobars DELETE fooset (1, 2);

Description

Update items in a table

Parameters

tablename The name of the table

RETURNS Return the items that were operated on. Default is RETURNS NONE. See the Amazon docs for Up-
dateItem for more detail.

THROTTLE Limit the amount of throughput this query can consume. This is a pair of values for
(read_throughput, write_throughput). You can use a flat number or a percentage (e.g. 20 or
50%). Using * means no limit (typically useless unless you have set a default throttle in the Options).

Update expression

All update syntax is pulled directly from the AWS docs:

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.Modifying.html

In general, you may use any syntax mentioned in the docs, but you don’t need to worry about reserved words or
passing in data as variables like :var1. DQL will handle that for you.

WHERE and KEYS IN

Both of these expressions are the same as in SELECT . Note that using KEYS IN is more efficient because DQL can
perform the writes without doing a query first.

12 Chapter 1. User Guide

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.Modifying.html

dql, Release 0.6.2

1.3 Data Types

Below is a list of all DynamoDB data types and examples of how to represent those types in queries.

NUMBER 123
STRING 'asdf' or "asdf"
BINARY b'datadatadata'
NUMBER SET (1, 2, 3)
STRING SET ('a', 'b', 'c')
BINARY SET (b'a', b'c')
BOOL TRUE or FALSE
LIST [1, 2, 3]
MAP {'a': 1}

1.3.1 Timestamps

DQL has some limited support for timestamp types. These will all be converted to Unix timestamps under the hood.

• TIMESTAMP('2015-12-3 13:32:00') or TS() - parses the timestamp in your local timezone

• UTCTIMESTAMP('2015-12-3 13:32:00') or UTCTS() - parses the timestamp as UTC

• NOW() - Returns the current timestamp

You can also add/subtract intervals from a timestamp

• NOW() - INTERVAL("1 day")

• NOW() + INTERVAL "1y 2w -5 minutes"

You can wrap any of these with MS() to convert the result into milliseconds instead of seconds.

MS(NOW() + INTERVAL '2 days')

Below is a list of all keywords that you can use for intervals

• year, years, y

• month, months

• week, weeks, w

• day, days, d

• hour, hours, h

• minute, minutes, m

• second, seconds, s

• millisecond, milliseconds, ms

• microsecond, microseconds, us

1.4 Options

The following are options you can set for DQL. Options are set with opt <option> <value>, and you can see
the current option value with opt <option>

1.3. Data Types 13

dql, Release 0.6.2

width int / auto Number of characters wide to format the display
pagesize int / auto Number of results to get per page for queries
display less / stdout The reader used to view query results
format smart / column / expanded Display format for query results
allow_select_scan bool If True, SELECT statement can perform table scans

1.4.1 Throttling

DQL also allows you to be careful how much throughput you consume with your queries. Use the throttle
command to set persistent limits on all or some of your tables/indexes. Some examples:

Set the total allowed throughput across all tables
> throttle 1000 100
Set the default allowed throughput per-table/index
> throttle default 40% 20%
Set the allowed throughput on a table
> throttle mytable 10 10
Set the allowed throughput on a global index
> throttle mytable myindex 40 6

See help throttle for more details, and use unthrottle to remove a throttle. You can also set throttles on a
per-query basis with the THROTTLE keyword.

1.5 Developing

To get started developing dql, clone the repo:

git clone https://github.com/stevearc/dql.git

It is recommended that you create a virtualenv to develop:

python 3
python3 -m venv dql_env
python 2
virtualenv dql_env

source ./dql_env/bin/activate
pip install -e .

1.5.1 Running Tests

The command to run tests is python setup.py nosetests, but I recommend using tox. Some of these tests
require DynamoDB Local. There is a nose plugin that will download and run the DynamoDB Local service during the
tests. It requires the java 6/7 runtime, so make sure you have that installed.

1.5.2 Local dev Using pyenv pyenv-virtualenv tox tox-pyenv

Pre-requisites

• Install pyenv

14 Chapter 1. User Guide

https://tox.readthedocs.io/en/latest/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tools.html
https://github.com/pyenv/pyenv

dql, Release 0.6.2

– Why use pyenv? Intro to pyenv

• Install pyenv-virtualenv so that you can manage virtualenvs from pyenv.

• Install Java: I recomend using sdkman to manage your java installations.

– I use java version 8.0.265.j9-adpt

– sdk install java 8.0.265.j9-adpt

Setting up local envs:

See installed python versions
pyenv versions

See which python you are currently using. This will also show missing versions
required by .python-version file.
pyenv which python

Install the required python versions using pyenv.
pyenv install <version-number>

Version numbers are listed in the .python-version file.
pyenv install 3.8.2
pyenv install 3.7.7
pyenv install 3.6.10

Create a virtual env named "dql-local-env" with python version 3.7.7
pyenv virtualenv 3.7.7 dql-local-env

Look at the virtual envs. dql-local-env should have a * next to it indicating
that it is selected.
pyenv virtualenvs

You should be currently using "~/.pyenv/versions/dql-local-env/bin/python"
pyenv which python

install dependencies
pip install -r requirements_dev.txt

running tests with tox
tox

running specific tox env
tox -e format
tox -e py38-lint
tox -e package

After setting up your local env, you can install the executable of dql:

pip install -e .

In case you have a global dql already installed for your day to day use,
I recommend bumping the patch number so that you know which version you
are currently executing.
bump2version patch

check the version
dql --version

1.5. Developing 15

https://realpython.com/intro-to-pyenv/#what-about-a-package-manager
https://github.com/pyenv/pyenv-virtualenv#installing-with-homebrew-for-macos-users
https://sdkman.io/install

dql, Release 0.6.2

1.5.3 Versioning

Use bump2version instead of bumpversion because bump2version is actively maintained. This advise comes from
bumpversion project itself. See bumpversion’s pypi page for details.

Config based on: https://medium.com/@williamhayes/versioning-using-bumpversion-4d13c914e9b8

Usage:

will update the relevant part and start a new `x.x.x-dev0` build version
$> bump2version patch
$> bump2version minor
$> bump2version major

update the build number from `x.x.x-dev0` to `x.x.x-dev1`
$> bump2version build

release when ready, will convert the version to `x.x.x`, commit and tag it.
$> bump2version --tag release

1.6 Changelog

1.6.1 0.6.2 - Unreleased

• Fix: Issue with missing dependency (typing_extensions) made apparent by python 3.9

• Added: Run tests with python 3.9

• Chore: general cleanup & lint fixes

• Chore: removing travis-ci; adding github workflows

• Added: clear & cls commands.

• Updated: clear, cls, exit commands are no longer tracked in history.

1.6.2 0.6.1

• Feature: Retain query history across sessions. (#40)

• Fix: Cannot count(*) on an index (#37)

• Fix: Saving data to some file formats was failing

• Fix: Constraint functions accept quoted field names (#36)

• Chore: Updated config for Dynamo Local to install dependency within project root.

1.6.3 0.6.0

• Bug fix: Fixed ZeroDivisionError with ls on On-Demand tables (#32)

• Added: ls command accepts glob patterns (#30)

• Added: Better error handling and display. (#28)

• Added: Standard error handling for execution with -c option. (#28)

16 Chapter 1. User Guide

https://medium.com/@williamhayes/versioning-using-bumpversion-4d13c914e9b8

dql, Release 0.6.2

• Added: Keyboard interrupts will print spooky emojis. (#28)

• Added: --json argument for use with -c to format results as JSON

• Chore: General Dev Env & CI updates for easier development. (#27)

1.6.4 0.5.28

• Bug fix: Encoding errors for some SAVE file formats

1.6.5 0.5.27

• Bug fix: Proper throttling in Python 3

Dropping support for python 3.4

1.6.6 0.5.26

• Use python-future instead of six as compatibility library

• Now distributing a wheel package

• Bug fix: Confirmation prompts crash on Python 2

1.6.7 0.5.25

• Bug fix: Compatibility errors with Python 3

1.6.8 0.5.24

• Bug fix: Support key conditions where field has a - in the name

1.6.9 0.5.23

• Bug fix: Default encoding error on mac

Dropping support for python 2.6

1.6.10 0.5.22

• Bug fix: Can now run any CLI command using -c "command"

1.6.11 0.5.21

• Bug fix: Crash fix when resizing terminal with ‘watch’ command active

• ‘Watch’ columns will dynamically resize to fit terminal width

1.6. Changelog 17

dql, Release 0.6.2

1.6.12 0.5.20

• Bug fix: When saving to JSON floats are no longer cast to ints

• Bug fix: Reserved words are correctly substituted when using WHERE . . . IN

1.6.13 0.5.19

• Locked in the version of pyparsing after 2.1.5 broke compatibility again.

1.6.14 0.5.18

• Bug fix: Correct name substitution/selection logic

• Swapped out bin/run_dql.py for bin/install.py. Similar concept, better execution.

1.6.15 0.5.17

• Bug fix: Can’t display Binary data

1.6.16 0.5.16

• Bug fix: Can’t use boolean values in update statements

1.6.17 0.5.15

• Gracefully handle missing imports on Windows

1.6.18 0.5.14

• Missing curses library won’t cause ImportError

1.6.19 0.5.13

• Fix bug where query would sometimes display ‘No Results’ even when results were found.

1.6.20 0.5.12

• Differentiate LIMIT and SCAN LIMIT

• Options and query syntax for throttling the consumed throughput

• Crash fixes and other small robustness improvements

1.6.21 0.5.11

• SELECT <attributes> can now use full expressions

18 Chapter 1. User Guide

dql, Release 0.6.2

1.6.22 0.5.10

• LOAD command to insert records from a file created with SELECT ... SAVE

• Default SAVE format is pickle

• SAVE command can gzip the file

1.6.23 0.5.9

• Don’t print results to console when saving to a file

• ‘auto’ pagesize to adapt to terminal height

• When selecting specific attributes with KEYS IN only those attributes are fetched

• ORDER BY queries spanning multiple pages no longer stuck on first page

• Column formatter fits column widths more intelligently

• Smart formatter is smarter about switching to Expanded mode

1.6.24 0.5.8

• Tab completion for Mac OS X

1.6.25 0.5.7

• run_dql.py locks in a version

• Display output auto-detects terminal width

1.6.26 0.5.6

• Format option saves properly

• WHERE expressions can compare fields to fields (e.g. WHERE foo > bar)

• Always perform batch_get after querying/scanning an index that doesn’t project all attributes

1.6.27 0.5.5

• General bug fixes

• Self contained run_dql.py script

1.6.28 0.5.4

• Fixes for watch display

• SELECT can save the results to a file

1.6. Changelog 19

dql, Release 0.6.2

1.6.29 0.5.3

• ALTER commands can specify IF (NOT) EXISTS

• New watch command to monitor table consumed capacities

• SELECT can fetch attributes that aren’t projected onto the queried index

• SELECT can ORDER BY non-range-key attributes

1.6.30 0.5.2

• EXPLAIN <query> will print out the DynamoDB calls that will be made when you run the query

• ANALYZE <query> will run the query and print out consumed capacity information

1.6.31 0.5.1

• Pretty-format non-item query return values (such as count)

• Disable passing AWS credentials on the command line

1.6.32 0.5.0

• Breakage: New syntax for SELECT, SCAN, UPDATE, DELETE

• Breakage: Removed COUNT query (now SELECT count(*))

• Breakage: Removed the ability to embed python in queries

• New alternative syntax for INSERT

• ALTER can create and drop global indexes

• Queries and updates now use the most recent DynamoDB expressions API

• Unified options in CLI under the opt command

1.6.33 0.4.1

• Update to maintain compatibility with new versions of botocore and dynamo3

• Improving CloudWatch support (which is used to get consumed table capacity)

1.6.34 0.4.0

• Breakage: Dropping support for python 3.2 due to lack of botocore support

• Feature: Support for JSON data types

20 Chapter 1. User Guide

dql, Release 0.6.2

1.6.35 0.3.2

• Bug fix: Allow ‘.’ in table names of DUMP SCHEMA command

• Bug fix: Passing a port argument to local connection doesn’t crash

• Bug fix: Prompt says ‘localhost’ when connected to DynamoDB local

1.6.36 0.3.1

• Bug fix: Allow ‘.’ in table names

1.6.37 0.3.0

• Feature: SELECT and COUNT can have FILTER clause

• Feature: FILTER clause may OR constraints together

1.6.38 0.2.1

• Bug fix: Crash when printing ‘COUNT’ queries

1.6.39 0.2.0

• Feature: Python 3 support

1.6.40 0.1.0

• First public release

1.6. Changelog 21

dql, Release 0.6.2

22 Chapter 1. User Guide

CHAPTER 2

API Reference

2.1 dql package

2.1.1 Subpackages

dql.expressions package

Submodules

dql.expressions.base module

dql.expressions.constraint module

dql.expressions.selection module

dql.expressions.update module

dql.expressions.visitor module

Module contents

dql.grammar package

Submodules

dql.grammar.common module

dql.grammar.parsed_primitives module

23

dql, Release 0.6.2

dql.grammar.query module

Module contents

2.1.2 Submodules

dql.cli module

dql.engine module

dql.exceptions module

dql.help module

dql.history module

dql.models module

dql.monitor module

dql.output module

dql.throttle module

dql.util module

2.1.3 Module contents

24 Chapter 2. API Reference

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

25

	User Guide
	Getting Started
	Queries
	Data Types
	Options
	Developing
	Changelog

	API Reference
	dql package

	Indices and tables

